Network Working Group W. Imajuku, Ed., NTT Internet-Draft Otani, Ed., KDDI Intended status: Informational N. Bitar, Ed., Verizon Expires: June 13, 2009 December 10, 2008 Service Provider Requirements for Ethernet control with GMPLS draft-ietf-ccamp-ethernet-gmpls-provider-reqs-01.txt Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on June 13, 2009. Imajuku, et al. Expires June 13, 2009 [Page 1] Internet-Draft Service Provider Requirements December 2008 Abstract Generalized Multi-Protocol Label Switching (GMPLS) is applicable to Ethernet switches supporting Provider Backbone Bridge Traffic Engineering (PBB-TE) networks. The GMPLS controlled Ethernet label switch network not only automates creation of Ethernet Label Switched Paths(Eth-LSPs), it also provides sophisticated Eth-LSP recovery Mechanisms such as protection and restoration of an Eth-LSP. This document describes the requirements for the set of solutions of GMPLS controlled Ethernet label switch networks. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Conventions used in this document . . . . . . . . . . . . . . 4 3. Reference model . . . . . . . . . . . . . . . . . . . . . . . 5 3.1. Single Layer . . . . . . . . . . . . . . . . . . . . . . . 5 3.2. Multi Layer . . . . . . . . . . . . . . . . . . . . . . . 5 4. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1. Control plane architecture and functionality . . . . . . . 7 4.1.1. In-band control channel . . . . . . . . . . . . . . . 7 4.1.2. Neighbor discovery mechanism . . . . . . . . . . . . . 7 4.1.3. Addressing . . . . . . . . . . . . . . . . . . . . . . 7 4.2. Ethernet LSP control . . . . . . . . . . . . . . . . . . . 7 4.2.1. Prevention of Loops . . . . . . . . . . . . . . . . . 7 4.2.2. Service control . . . . . . . . . . . . . . . . . . . 7 4.2.3. P2MP and MP2MP requirements . . . . . . . . . . . . . 8 4.2.4. Asymmetric bandwidth . . . . . . . . . . . . . . . . . 8 4.2.5. QoS control . . . . . . . . . . . . . . . . . . . . . 8 4.3. OA&M related functionality . . . . . . . . . . . . . . . . 8 4.4. Protection and Restoration related functionality . . . . . 8 4.5. Link Aggregation Group (LAG) related functionality . . . . 9 4.5.1. Failure or deletion of LAG member link . . . . . . . . 9 4.5.2. Recovery or addition of LAG member link . . . . . . . 9 4.6. Inter-domain Ethernet LSP . . . . . . . . . . . . . . . . 9 4.7. Multi-layer network . . . . . . . . . . . . . . . . . . . 10 4.7.1. Dynamic formation of LAG . . . . . . . . . . . . . . . 10 4.7.2. Other requirements . . . . . . . . . . . . . . . . . . 10 4.8. Scalability . . . . . . . . . . . . . . . . . . . . . . . 10 5. Security Considerations . . . . . . . . . . . . . . . . . . . 12 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 14 8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 15 8.1. Normative References . . . . . . . . . . . . . . . . . . . 15 8.2. Informative References . . . . . . . . . . . . . . . . . . 16 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 17 Intellectual Property and Copyright Statements . . . . . . . . . . 19 Imajuku, et al. Expires June 13, 2009 [Page 2] Internet-Draft Service Provider Requirements December 2008 1. Introduction Scalability and manageability of Ethernet switch networks has continuously improved, and the deployment of Ethernet switches supporting Provider Bridging (PB) [IEEE802.1ad] has became one of the solutions for service providers to provide enterprise WAN/LAN services. IEEE standardization activities of Provider Backbone Bridge(PBB) [IEEE802.1ah] and PBB for Traffic Engineering (PBB-TE) [IEEE802.1Qay] provide an opportunity not only for enhancing the scalability, manageability, and controllability of the Ethernet service networks, but also for more efficiently deploying access/ metro access networks. Generalized Multi-Protocol Label Switching (GMPLS) provides the framework for handling and controlling various types of switching technologies, namely packet switching with various label formats TDM switching, and wavelength switching [RFC3945]. Therefore, the combined use of GMPLS and PBB-TE is a fairly suitable "use case" that contributes to enhancing the flexibility of Ethernet Label Switched Path (Eth-LSP) over Ethernet switch networks without defining additional connection layers. This document describes requirements for GMPLS protocols to control Ethernet label switch networks and comprises mainly two parts. The first one is the requirements for GMPLS extension for controlling Ethernet layer. The second one includes the requirements for GMPLS extensions to support multi-layer operation. Although a large portion of requirements in the second scope coincides with the description in [RFC5145] and [RFC5146], some of important requirements are also described in this document. Imajuku, et al. Expires June 13, 2009 [Page 3] Internet-Draft Service Provider Requirements December 2008 2. Conventions used in this document The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. Imajuku, et al. Expires June 13, 2009 [Page 4] Internet-Draft Service Provider Requirements December 2008 3. Reference model 3.1. Single Layer This document describes requirements based on the reference model depicted in Fig.1. The first reference model is an intra-domain and single layer GMPLS controlled Ethernet label switching network in which Eth-LSPs traverse over between Back Bone Core Bridges (BCBs) or Back Bone Edge Bridges (BEBs). -------- | LSR3 |__ P-based IF -------- ----- _____|(IB-BEB)|__ S-tagged IF P-based IF | LSR1 |____|LSR2 | | |__ I-tagged IF S-tagged IF |(IB-BEB)| |(BCB)| -------- I-tagged IF | | | |_____ -------- -------- ----- | LSR4 | | (B-BEB)| | |__ I-tagged IF -------- | GMPLS Eth-LSP | | (BVID/BMAC) | |<---------------| Figure 1 Single layer GMPLS controlled PBB-TE network The BEBs provide mainly three types of service interfaces, namely Port based service interface (P-based IF), S-tagged service interface (S-tagged IF), and I-tagged service Interface (I-tagged IF) [IEEE802.1ah]. The "P-based IF" and "S-tagged IF" are connected to the I-component of a BEB (I-BEB), while the I-tagged IF is connected to the B-component of a BEB (B-BEB). "S-tagged IF" can perform various types of mapping between Service VLAN ID (S-VID) and Backbone instance Service Identifier (I-SID). Here, S-VID is assigned within customer network domain or Provider Bridge (PB) domain. On the other hand, I-SID is defined between I-components of BEBs. 3.2. Multi Layer The second reference model is Ethernet and L1 (such as TDM, OTN, etc) multi-layer network. Each Ethernet switch node behaves as a border node between the Ethernet layer and optical Layers. Each BCB or BEB terminates Optical Label Switched Path (O-LSPs) with Ethernet encoding type and some O-LSPs dynamically form LAG. Thus, some Eth- LSPs traverse over multiple O-LSPs, while other Eth-LSPs traverse over single O-LSPs. Also, it is technically possible to form multiple layer Ethernet Imajuku, et al. Expires June 13, 2009 [Page 5] Internet-Draft Service Provider Requirements December 2008 switch networks. Namely, the reference model is defined as the case that Ethernet switch network substitutes L1 network in Fig.2, and realizes MAC in MAC Ethernet transport. The routing information of optical layer may be isolated (overlay model), shuffled (peer model), or virtualized with FA-LSPs (augmented model) for Ethernet switch layer. -------- ------ -------- P-based IF __| LSR1 | | LSR2 | | LSR3 |__ P-based IF S-tagged IF __|(IB-BEB)| | (BCB)| |(IB-BEB)|__ S-tagged IF I-tagged IF __| | | | | |__ I-tagged IF -------- ------ -------- | | ||LAG LAG|| ..................|...........|..||..........||................... | | || || ---+---- ------ ------ | LSR A |_____|LSR B |_____|LSR C | | (LSC) | |(LSC) | WDM |(LSC) | -------- ------ ------ | GMPLS Eth-LSP (BVID/BMAC)| |<------------------------>| | O-LSP | | O-LSP | |<--------->| |<-------->| Figure 2 Multi-layer GMPLS controlled Ethernet label switched network Imajuku, et al. Expires June 13, 2009 [Page 6] Internet-Draft Service Provider Requirements December 2008 4. Requirements 4.1. Control plane architecture and functionality 4.1.1. In-band control channel The solution should be able to establish in-band control channel, while preserving the solution of out-band control channel. The solution should include negotiation mechanism to specify bandwidth and priority of control-channel between peer Ethernet switches. 4.1.2. Neighbor discovery mechanism The solution MUST be able to realize automatic neighbor discover as realized in current PB or PBB networks. Namely, the solution MUST support an automatic negotiation mechanism to exchange information of Node ID, TE-Link ID, Data-link ID (in the case of link Bundling), and IP address of the control channel. On the other hand, the extension should be minimized by making use of [IEEE802.1AB]. 4.1.3. Addressing TBD 4.2. Ethernet LSP control 4.2.1. Prevention of Loops The solution should have reliability to prevent creating loops of Eth-LSPs. Specifically if the solution supports numbered TE-Link addressing, the solution should define a methodology and protocol extensions if needed to detect or prevent loops. 4.2.2. Service control The solution should control various types of service interfaces defined in [IEEE802.1ah]. The service types of Egress port 1) Port based service interface 2) S-tagged service interface a) one-to-one mapping of S-VIDs to I-SIDs b) bundled mapping of S-VIDs to I-SIDs such as many-to-one, all-to- one, transparent mapping Also, the solution should be flexible to following operational Imajuku, et al. Expires June 13, 2009 [Page 7] Internet-Draft Service Provider Requirements December 2008 scenarios, 1) Any change of mapping of S-VIDs to I-SIDs 2) Flexibility to nest or stitch higher layer Eth-LSPs. 3) Any change of bandwidth of Eth-LSPs. Here, the solution of bandwidth modification scenario may include bundling of multiple Eth- LSPs. 4.2.3. P2MP and MP2MP requirements To provide the service such as a content distribution, the creation of uni-directional P2MP Eth-LSPs should be supported. Also, to provide E-tree type services with multicast traffic, the creation of bi-directional P2MP/MP2P Eth-LSPs should be supported. The MP2MP requirement is under discussion. 4.2.4. Asymmetric bandwidth To provide the service which has asymmetric traffic pattern such as a kind of E-tree type services, the creation of asymmetric bandwidth bi-directional Eth-LSPs should be supported. The bandwidth modification of Eth-LSPs in operation should be also supported. 4.2.5. QoS control The routing and signaling extensions to control QoS based on Ethernet traffic parameters defined in [MEF10.1] should be supported. Unused bandwidth per CoS should be exhanged by routing extensions like [RFC4124] and the CoS and bandwidth profile such as CIR, CBS, EIR and EBS for a requested LSP should be carried by signaling extensions for bandwidth accounting and traffic control at a local level. 4.3. OA&M related functionality OAM mechanisms must be defined for GMPLS controlled E-LSPs. Since the data plane is still Ethernet based, the mechanisms should capitalize on existing [IEEE802.1ag] and [Y.1731] mechanisms. Also, the solution should provide admin status control mechanism to coordinate with Connectivity Fault Management (CFM) functionality [IEEE802.1ag]. 4.4. Protection and Restoration related functionality 1:1 protection, Shared protection and dynamic restoration should be supported. Protection and Restoration may be triggered by Ethernet Imajuku, et al. Expires June 13, 2009 [Page 8] Internet-Draft Service Provider Requirements December 2008 OA&M function such as CC, AIS and RDI [IEEE802.1ag] , [Y.1731]. 4.5. Link Aggregation Group (LAG) related functionality Link Aggregation is beneficial functionality to realize reliable Ethernet label switched networks. The availability of connection between peer Ethernet switches can be enhanced in the case of single link failure, if member links of the LAG are diversely routed. In this operational scenario, LAG provides for link protection functionality. The solution should include methodology to explicitly assign the links forming LAG a desired link type (which is similar sense to assign link protection type described in [RFC3471]). 4.5.1. Failure or deletion of LAG member link The solution should include functionality to prioritize Eth-LSPs, specifically when total bandwidth of Eth-LSPs exceeds total bandwidth of healthy LAG members after the failure of one or more LAG member links. The solution should provide for rerouting an Eth-LSP setup over a failed member link in a LAG to another member link in the LAG. 4.5.2. Recovery or addition of LAG member link The solution should include functionality to re-optimize Eth-LSP paths after the addition of a LAG member link, i.e. reversion of failed Eth-LSPs after the failure of the LAG member link, or reallocation of other Eth-LSPs traversing congested Links after the addition of LAG member link. 4.6. Inter-domain Ethernet LSP The solution should take into account possible future extension to control inter-domain Eth-LSPs. Here, the possible extensions are Eth-LSPs traverse over 1) I-tagged service interfaces 2) S-tagged service interfaces, and 3) C-tagged service interfaces. Imajuku, et al. Expires June 13, 2009 [Page 9] Internet-Draft Service Provider Requirements December 2008 4.7. Multi-layer network 4.7.1. Dynamic formation of LAG The solution should include dynamic formation of a LAG after the creation or deletion of optical LSPs which interconnect ports of Ethernet switches. 4.7.2. Other requirements The architecture and requirements for MPLS-GMPLS inter-working are described in [RFC5145] and [RFC5146]. Some of the requirements described in [RFC5146] are valid even for the case of GMPLS-GMPLS interworking between Ethernet label switched network and L1 network. In other words, 1) End-to-End signaling of Eth-LSPs 2) Triggered establishment of L1 LSPs 3) Avoiding complexity and risks. should be satisfied even for GMPLS control plane for Ethernet. For more details, see [Interwk-req] and MPLS-TE client network written in the document should be understood as Ethernet client network. Regarding to routing issue, 1) Advertisement of Ethernet label switch network information via L1 GMPLS networks 2) Selective Advertisement of Ethernet label switched network information via a Border node should be satisfied even in the case of GMPLS-GMPLS inter-working. Note that there is significant difference between MPLS-TE and GMPLS controlled Ethernet from the view point of methodology to create control channel. 4.8. Scalability The solution MUST be designed to scale according to following metrics. - Number of nodes - Number of TE-Links Imajuku, et al. Expires June 13, 2009 [Page 10] Internet-Draft Service Provider Requirements December 2008 - Number of LSPs - Number of service ports - Number of bundled S-VLANs mapped to I-SID and Eth-LSPs. Imajuku, et al. Expires June 13, 2009 [Page 11] Internet-Draft Service Provider Requirements December 2008 5. Security Considerations The extension for GMPLS controlled Ethernet label switching should be considered under the same security as current work. This extension will not change the underlying security issues. Imajuku, et al. Expires June 13, 2009 [Page 12] Internet-Draft Service Provider Requirements December 2008 6. IANA Considerations This document has no actions for IANA. Imajuku, et al. Expires June 13, 2009 [Page 13] Internet-Draft Service Provider Requirements December 2008 7. Acknowledgements The authors would like to thank Mr. Allan McGuire, Mr. Jullien Meuric, Mr. Lou Berger and Mr. Don Fedyk for their valuable comments. Imajuku, et al. Expires June 13, 2009 [Page 14] Internet-Draft Service Provider Requirements December 2008 8. References 8.1. Normative References [IEEE802.1AB] IEEE Standard for Local and Metropolitan Area Networks, Station and Media Access Control Connectivity Discovery [IEEE802.1Qay] "IEEE standard for Provider Backbone Bridges Traffic Engineering", work in progress. [IEEE802.1ad] IEEE Computer Society, "Virtual Bridged Local Area Networks - Amendment 4 : Provider Bridges", P802.1ad/D6.0, Draft, Work in Progress. [IEEE802.1ag] IEEE Computer Society, "Virtual Bridged Local Area Networks - Amendment 5 : Connectivity Fault Management", P802.1ag/D5.2, Draft, Work in Progress. [IEEE802.1ah] "IEEE standard for Provider Backbone Bridges", work in progress. [IEEE802.3] IEEE Computer Society, "Amendment to Carrier Sense Multiple Access with Collision Detection (CAMS/CD) Access Method and Physical Layer Specifications. [MEF10.1] MEF, "Ethernet Services Attributes Phase2(MEF10.1)," http ://www.metroethernetforum.org/PDF_Documents/MEF10-1.pdf, Nov. 2006. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003. [RFC3945] Mannie, E., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004. [Y.1731] "ITU-T Y.1731". Imajuku, et al. Expires June 13, 2009 [Page 15] Internet-Draft Service Provider Requirements December 2008 8.2. Informative References [RFC4124] Le Faucheur, F., "Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering", RFC 4124, June 2005. [RFC5145] Shiomoto, K., "Framework for MPLS-TE to GMPLS Migration", RFC 5145, March 2008. [RFC5146] Kumaki, K., "Interworking Requirements to Support Operation of MPLS-TE over GMPLS Networks", RFC 5146, March 2008. Imajuku, et al. Expires June 13, 2009 [Page 16] Internet-Draft Service Provider Requirements December 2008 Authors' Addresses Wataru Imajuku (editor) NTT Network Innovation Labs 1-1 Hikari-no-oka Yokosuka, Kanagawa Japan Phone: +81-(46) 859-4315 Email: imajuku.wataru@lab.ntt.co.jp Yoshiaki Sone NTT Network Innovation Labs 1-1 Hikari-no-oka Yokosuka, Kanagawa Japan Phone: +81-(46) 859-2456 Email: sone.yoshiaki@lab.ntt.co.jp Muneyoshi Suzuki NTT Access Service System Labs 1-6 Nakase Mihama-ku, Chiba Japan Phone: (43) 211-8282 Email: suzuki.muneyoshi@lab.ntt.co.jp Kazuhiro Matsuda NTT Network Innovation Labs 1-1 Hikari-no-oka Yokosuka, Kanagawa Japan Phone: (46) 859-3177 Email: matsuda.kazuhiro@lab.ntt.co.jp Imajuku, et al. Expires June 13, 2009 [Page 17] Internet-Draft Service Provider Requirements December 2008 Tomohiro Otani (editor) KDDI Corporation 2-3-2 Nishi-shinjukuOhara Shinjuku-ku, Tokyo 163-8003 Japan Phone: +81-(3) 3347-6006 Email: tm-otani@kddi.com Kenichi Ogaki KDDI R&D Laboratories, Inc. 2-1-15 Ohara Kamifukuoka, Saitama 356-8502 Japan Phone: +81-(49) 278-7897 Email: ogaki@kddilabs.jp Nabil Bitar (editor) Verizon 40 Sylvan Road Waltham, MA 02451 USA Email: nabil.n.bitar@verizon.com Imajuku, et al. Expires June 13, 2009 [Page 18] Internet-Draft Service Provider Requirements December 2008 Full Copyright Statement Copyright (C) The IETF Trust (2008). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Imajuku, et al. Expires June 13, 2009 [Page 19]